6/13/2012

Summarizing

Corpus

NL-UNL (Analysis) Dictionary

Mumbai, June 11-15 UNL-NL (Generation) Dictionary
UNL Grammar Workshop Inflectional grammar (for generation)
Indian Chapter A

DAY #3

The UNL System

UNL-ization

natural language analysis and understanding =

To provide a

" UNL version of
language-
restricted data

Grammar Specs

UNL-NL Grammar Specs
a plain text file (.txt)
one entry per line

there are two types of rules:
NL-UNL

s GRAMMAR TRANSFORMATION RULES are used to generate natural language
=g sentences out of UNL graphs and vice-versa.
Pl Tan DISAMBIGUATION RULES are used to improve the performance of
transformation rules by constraining their applicability.
NL-UNL
DICTIONARY

6/13/2012

Transformation Rules

Transformation Rules

LIST-TO-LIST (LL) LIST-TO-TREE (LT)

Transformation Rules Transformation Rules

O (2 (2 - - “E N

iow [iow |
o (A):=(A)(B); or
(A):=(B)(A);
DELETE (A):=-(A); REPLACE (A)(B):=SYN(A;B);
REPLACE (A):=(B);
MERGE (A)(B):=(C);
DIVIDE (A):=(B)(C);

TREE-TO-TREE(TT) TREE-TO-NETWORK (TN)

Transformation Rules Transformation Rules

[row row | [low row | [low fiow | ‘ ow =
1o |

[1uw |
ADD RELATION SYN(AB):=+SYN(C;D);
DELETE RELATION SYN(A;B):=-SYN(A;B); ST DM .
REPLACE RELATION SYN(A;B):=SYN(C;D); (G =S
MERGE RELATION SYN(A;B)SYN(CD):=SYN(ES);
DIVIDE RELATION SYN(A;B):=SYN(C;D)SYN(E;F);
ADD NODE SYN(A;B)=SYN(A;B,C);
DELETE NODE SYN(A/B):=SYN(A);

6/13/2012

NETWORK-TO-NETWORK (NN)

Transformation Rules

General Properties of

Transformation Rules

PRIORITY
Rules are applied serially, according to the order defined in the grammar. The
first rule will be the first to be applied, the second will the second, and so on.

— RECURSIVENESS
Gl Ged -l S Rules are applied recursively as long as their conditions are true.

COMPREHENSIVENESS

@ Grammars are applied comprehensively as long as there is at least one
applicable rule.

ADD RELATION

DELETE RELATION SEM(A;B):=-SEM(A B); ACTION

REPLACE RELATION SEM(A;B):=SEM(C;D); The rul.es may a(.id or delete values to the source and the target nodes, but only
in the right side items:

MERGE RELATION SEM(A;B)SEM(C;D):=SEM(E;F); agt(a;b):=agt(+;);

DIVIDE RELATION SEM(A;B):=SEM(C;D)SEM(E:F); agt(a;b):=agt(;-b);

General Properties of General Properties of

Transformation Rules Transformation Rules

CONSERVATION SCOPE
Rules affect only the information clearly specified. No relation, node or feature The REPLACE, MERGE and DIVIDE rules affect only their designated scopes.

is deleted unless explicitly informed.
NN may only replace, merge or divide semantic relations; TT may only replace,

For instance, in the examples below, the source node of the “agt” relation preserves, merge or divide syntactic relations; and LL may only replace, merge or divide list
in all cases, the value “a”. The only change concerns the feature “c”, which is added nodes. All other information is preserved, unless explicitly informed.
to the source node of the “agt” in the first two cases; and the feature “b”, which is
deleted from the target node in the third case. INPUT: agt(a;b) cob(a;c)
RULE: cob(;):=obj(;);
OUTPUT: agt(a;b) obj(a;c)
INPUT: agt(a;b) cob(a;c)
RULE: cob(a;):=obj(-a, +d;);
Inany case, the ADD and DELETE rules (i.e., when the right side starts with “+"or -*) OUTPUT: agt(a;b) obj(d;c)

preserve the items in the left side, except for the explicitly deleted ones:

General Properties of General Properties of

Transformation Rules Transformation Rules

CONJUNCTION COMMUTATIVITY
Both the left and the right side of the rule may have as many items as necessary. Inside the same side of the rule, the order of the factors does not affect the end
The items must be juxtaposition. result, except for list-processing rules (LL, LT and TL).

SEM(A;B)SEM(C;D)SEM(E;F):=SEM(G;H)SEM(I;J)SEM(K;L);
SEM(A;B):=SEM(C;D)SEM(E;F); = SEM(A;B):= SEM(E;F)SEM(C;D);

DISJUNCTION SYN(A;B):=SYN(G;D)SYN(E;F); = SYN(A;B):= SYN(E;F)SYN(C;D);
The left side of the rules may bring disjuncts, but not the right side.
{SEM(A; B)|SEM(C; DM SEMI(E; F):=+SEM(E;F); But:
SEM(A;B){SEM(C;D)|SEM(E;F)}:=-SEM(A;B); (A):=(B)(C); #= (A):=(Q)(B);
agt(VER,{Vo1|Vo2};NOU,ASNG}):=; SYN(A;B):=(Q)(D); # SYN(A;B):=(D)C);

(O)(D):=SYN(A;B); = (D)(C):=SYN(A;B);

Additionally, the order of the features inside a relation does not affect the end
result, but the order of the nodes is non-commutative.

SEM(VER,TRA; NOU,MCL) = SEM(TRA,VER; MCL,NOU)

But:

SEM(VER,TRA; NOU,MCL) # SEM(NOU,MCL;VER,TRA)

6/13/2012

General Properties of General Properties of

Transformation Rules Transformation Rules

INDEXATION INDEXATION
* Indexes (%) are used for co-indexing nodes, attributes and values inside and * Default indexation
between the left and the right side of transformation rules. * If omitted, indexes are assigned by default
* X(%a;)Y(%a;) In default indexation, left-side nodes are automatically co-indexed with

* X(%a;%b):=Y(%b;%a); right-side nodes if and only if their position and number are the same:
* Any co-indexation is made by the use of indexes and not by the repetition of * X(A;B):=Y(C;D); is the same as X(%01,A;%02,B):=Y (%01, C;%02,D);
features. * Non-co-indexed nodes in the right side means ADDITION, whereas left-
* X(A;))Y(A;) is different from X(%a;)Y (%a;). side nodes that are not referred to in the right side means DELETION
 Indexes are made of any sequence of alphanumeric characters and © X(%a;%b):=Y(%a;X;%b); is the same as
underscore (numbers are used for default indexation and must be avoided) X(%a;%b):=Y(%a;%o02,X,;%b);

* Indexes may also be used to transfer attribute values expressed in the
format ATTRIBUTE=VALUE
+ X(A,%a,ATT1=VAL1;B,%b):=X(%a;%b,ATT1=06a);

English Analysis Grammar (1) English Analysis Grammar (2)

SOURCE (eng) SOURCE (eng)
asdfghij book

TARGET (UNL) TARGET (UNL)
"asfghij* book

RULES RULES
No rule is necessary No rule is necessary

English Analysis Grammar (3) English Analysis Grammar (4)
SOURCE (eng) SOURCE (eng)
a book the book
TARGET (UNL) TARGET (UNL)
book.@indef book.@def
RULES RULES
DELETE THE BLANK SPACE DELETE THE BLANK SPACE
O)=
PROCESSTHE ARTICLE PROCESS THE ARTICLE
("a", %x)(N,%y):=(%y, +@indef); OR (“the”,%x)(N,%y):=(%y,+@def); OR
(ART, @indef,%x) (N, %y):=(%y,+@indef); OR (ART, @def,%x) (N,%y):=(%y, + @def); OR
(D, att,%x) (N, %y):=(%y, +att=%x); (D, att,%x) (N,%y):=(%y,+att=%x);

English Analysis Grammar (5)

6/13/2012

English Analysis Grammar (6)

SOURCE (eng)
that book
TARGET (UNL)
book.@distal
RULES
DELETE THE BLANK SPACE
(G
PROCESS THE DEMONSTRATIVE
(“that”,%x)(N,%y):=(%y, + @distal); OR
(DEM, @distal,%x) (N,%y):=(%y,+@distal); OR
(D, att,%x) (N, %y):=(%y, +att=9%x);

English Analysis Grammar (7)

SOURCE (eng)
this book
TARGET (UNL)
book.@proximal
RULES

DELETE THE BLANK SPACE
(" "):=;

PROCESSTHE DEMONSTRATIVE
(“this”, %x)(N,%y):=(%y,+@proximal); OR
(DEM, @proximal,%x) (N,%y):=(%y,+@proximal); OR
(D, att,%x) (N, %y):=(%y,+att=%x);

English Analysis Grammar (11)

SOURCE (eng)
all books
TARGET (UNL)
book.@all
RULES
DELETE THE BLANK SPACE
[QEH
PROCESS THE QUANTIFIER
(“all”,%x)(N,%y):=(%y,+@all); OR
(QUA, @all,%x) (N,%y):=(%y,+@all); OR
(D,att,%x) (N,%y):=(%y, +att=%x);

English Analysis Grammar (13)

SOURCE (eng)
The books
TARGET (UNL)
book.@def.@pl
RULES
DELETE THE BLANK SPACE
"=
PROCESS THE ARTICLE
(D, att,%x) (N, %y):=(%y, +att=%x);
PROCESS THE NUMBER
(N,PLR,A@pI,%x):=(+@pl, %x);

SOURCE (eng)
very beautiful
TARGET (UNL)
beautiful. @plus
RULES
DELETE THE BLANK SPACE
"=
PROCESSTHE INTENSIFIER
(“very”,%x)(J,%y):=(%y,+@plus); OR
(QUA, @plus,%x) (J,%y):=(%y,+@plus); OR
(SAV, att,%x) (J,%y):=(%y, +att=%x);

TASK #5a

Goal

To create a NL-UNL grammar to generate the
corpus from your native language into UNL from
sentences 1to 17

