
6/13/2012

1

Mumbai, June 11-15

 Corpus
 NL-UNL (Analysis) Dictionary
 UNL-NL (Generation) Dictionary
 Inflectional grammar (for generation)

To provide a
UNL version of
language-
restricted data

UNLization

TEXT DRIVEN

SENTENCE DRIVEN

WORD DRIVEN

DEEP

SHALLOW

UNL SENTENCE

NL SENTENCE

NL-UNL

GRAMMAR

NL-UNL

DICTIONARY

 UNL-NL Grammar Specs
▪ a plain text file (.txt)

▪ one entry per line

▪ there are two types of rules:

▪ TRANSFORMATION RULES are used to generate natural language

sentences out of UNL graphs and vice-versa.

▪ DISAMBIGUATION RULES are used to improve the performance of
transformation rules by constraining their applicability.

6/13/2012

2

NATURAL LANGUAGE ANALYSIS

List
Processing

NL ORIGINAL
SENTENCE List-to-Tree LIST

STRUCTURE

Syntactic
Processing

SURFACE
SYNTACTIC
STRUCTURE

(TREE)

Tree-to-
Network

DEEP
SYNTACTIC

TREE (TREE)

Semantic
Processing

NETWORK
STRUCTURE

UNL GRAPH

NATURAL LANGUAGE ANALYSIS NATURAL LANGUAGE ANALYSIS NATURAL LANGUAGE ANALYSIS

NATURAL LANGUAGE ANALYSIS

UW UW UW UW UW UW UW UW UW UW

ACTION RULE

ADD
(A):=(A)(B); or

(A):=(B)(A);

DELETE (A):=-(A);

REPLACE (A):=(B);

MERGE (A)(B):=(C);

DIVIDE (A):=(B)(C);

uw

uw uw

uw uw

uw uw

UW UW UW UW UW

ACTION RULE

REPLACE (A)(B):=SYN(A;B);

uw

uw uw

uw uw

uw uw

uw

uw uw

uw uw

uw uw

ACTION RULE

ADD RELATION SYN(A;B):=+SYN(C;D);

DELETE RELATION SYN(A;B):=-SYN(A;B);

REPLACE RELATION SYN(A;B):=SYN(C;D);

MERGE RELATION SYN(A;B)SYN(C;D):=SYN(E;F);

DIVIDE RELATION SYN(A;B):=SYN(C;D)SYN(E;F);

ACTION RULE

ADD NODE SYN(A;B):=SYN(A;B;C);

DELETE NODE SYN(A;B):=SYN(A);

UW

UW

UW UW

UW

uw

uw uw

uw uw

uw uw

ACTION RULE

REPLACE SYN(C;D):=SEM(A;B);:

6/13/2012

3

ACTION RULE

ADD RELATION SEM(A;B):=+SEM(C;D);

DELETE RELATION SEM(A;B):=-SEM(A,B);

REPLACE RELATION SEM(A;B):=SEM(C;D);

MERGE RELATION SEM(A;B)SEM(C;D):=SEM(E;F);

DIVIDE RELATION SEM(A;B):=SEM(C;D)SEM(E;F);

UW

UW

UW UW

UW

UW

UW

UW UW

UW

PRIORITY
Rules are applied serially, according to the order defined in the grammar. The
first rule will be the first to be applied, the second will the second, and so on.

RECURSIVENESS
Rules are applied recursively as long as their conditions are true.

COMPREHENSIVENESS
Grammars are applied comprehensively as long as there is at least one
applicable rule.

ACTION
The rules may add or delete values to the source and the target nodes, but only
in the right side items:
 agt(a;b):=agt(+c;);
 agt(a;b):=agt(;-b);

CONSERVATION
Rules affect only the information clearly specified. No relation, node or feature
is deleted unless explicitly informed.

For instance, in the examples below, the source node of the “agt” relation preserves,
in all cases, the value “a”. The only change concerns the feature “c”, which is added
to the source node of the “agt” in the first two cases; and the feature “b”, which is
deleted from the target node in the third case.

agt(a;b):=agt(c;);
agt(a;b):=agt(+c;);
agt(a;b):=agt(;-b);

In any case, the ADD and DELETE rules (i.e., when the right side starts with “+”or “-“)
preserve the items in the left side, except for the explicitly deleted ones:

SCOPE
The REPLACE, MERGE and DIVIDE rules affect only their designated scopes.

NN may only replace, merge or divide semantic relations; TT may only replace,
merge or divide syntactic relations; and LL may only replace, merge or divide list
nodes. All other information is preserved, unless explicitly informed.

INPUT: agt(a;b) cob(a;c)
RULE: cob(;):=obj(;);
OUTPUT: agt(a;b) obj(a;c)

INPUT: agt(a;b) cob(a;c)
RULE: cob(a;):=obj(-a,+d;);
OUTPUT: agt(a;b) obj(d;c)

CONJUNCTION
Both the left and the right side of the rule may have as many items as necessary.
The items must be juxtaposition.
SEM(A;B)SEM(C;D)SEM(E;F):=SEM(G;H)SEM(I;J)SEM(K;L);

DISJUNCTION
The left side of the rules may bring disjuncts, but not the right side.
 {SEM(A;B)|SEM(C;D)}^SEM(E;F):=+SEM(E;F);
 SEM(A;B){SEM(C;D)|SEM(E;F)}:=-SEM(A;B);
 agt(VER,{V01|V02};NOU,^SNG}):=;

COMMUTATIVITY
Inside the same side of the rule, the order of the factors does not affect the end
result, except for list-processing rules (LL, LT and TL).

SEM(A;B):=SEM(C;D)SEM(E;F); = SEM(A;B):= SEM(E;F)SEM(C;D);
SYN(A;B):=SYN(C;D)SYN(E;F); = SYN(A;B):= SYN(E;F)SYN(C;D);

But:
(A):=(B)(C);  (A):=(C)(B);
SYN(A;B):=(C)(D);  SYN(A;B):=(D)(C);
(C)(D):=SYN(A;B);  (D)(C):=SYN(A;B);

Additionally, the order of the features inside a relation does not affect the end
result, but the order of the nodes is non-commutative.
SEM(VER,TRA ; NOU,MCL) = SEM(TRA,VER ; MCL,NOU)
But:
SEM(VER,TRA ; NOU,MCL)  SEM(NOU,MCL ; VER,TRA)

6/13/2012

4

INDEXATION
• Indexes (%) are used for co-indexing nodes, attributes and values inside and

between the left and the right side of transformation rules.
• X(%a;)Y(%a;)
• X(%a;%b):=Y(%b;%a);

• Any co-indexation is made by the use of indexes and not by the repetition of
features.
• X(A;)Y(A;) is different from X(%a;)Y(%a;).

• Indexes are made of any sequence of alphanumeric characters and
underscore (numbers are used for default indexation and must be avoided)

INDEXATION
• Default indexation

• If omitted, indexes are assigned by default
• In default indexation, left-side nodes are automatically co-indexed with

right-side nodes if and only if their position and number are the same:
• X(A;B):=Y(C;D); is the same as X(%01,A;%02,B):=Y(%01,C;%02,D);

• Non-co-indexed nodes in the right side means ADDITION, whereas left-
side nodes that are not referred to in the right side means DELETION
• X(%a;%b):=Y(%a;X;%b); is the same as

X(%a;%b):=Y(%a;%02,X,;%b);
• Indexes may also be used to transfer attribute values expressed in the

format ATTRIBUTE=VALUE
• X(A,%a,ATT1=VAL1;B,%b):=X(%a;%b,ATT1=%a);

 SOURCE (eng)

 asdfghij

 TARGET (UNL)

 "asfghij“

 RULES

 No rule is necessary

 SOURCE (eng)

 book

 TARGET (UNL)

 book

 RULES

 No rule is necessary

 SOURCE (eng)
 a book

 TARGET (UNL)
 book.@indef

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE ARTICLE
▪ (“a”,%x)(N,%y):=(%y,+@indef); OR

▪ (ART,@indef,%x) (N,%y):=(%y,+@indef); OR

▪ (D,att,%x) (N,%y):=(%y,+att=%x);

 SOURCE (eng)
 the book

 TARGET (UNL)
 book.@def

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE ARTICLE
▪ (“the”,%x)(N,%y):=(%y,+@def); OR

▪ (ART,@def,%x) (N,%y):=(%y,+@def); OR

▪ (D,att,%x) (N,%y):=(%y,+att=%x);

6/13/2012

5

 SOURCE (eng)
 that book

 TARGET (UNL)
 book.@distal

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE DEMONSTRATIVE
▪ (“that”,%x)(N,%y):=(%y,+@distal); OR

▪ (DEM,@distal,%x) (N,%y):=(%y,+@distal); OR

▪ (D,att,%x) (N,%y):=(%y,+att=%x);

 SOURCE (eng)
 this book

 TARGET (UNL)
 book.@proximal

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE DEMONSTRATIVE
▪ (“this”,%x)(N,%y):=(%y,+@proximal); OR

▪ (DEM,@proximal,%x) (N,%y):=(%y,+@proximal); OR

▪ (D,att,%x) (N,%y):=(%y,+att=%x);

 SOURCE (eng)
 all books

 TARGET (UNL)
 book.@all

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE QUANTIFIER
▪ (“all”,%x)(N,%y):=(%y,+@all); OR

▪ (QUA,@all,%x) (N,%y):=(%y,+@all); OR

▪ (D,att,%x) (N,%y):=(%y,+att=%x);

 SOURCE (eng)
 very beautiful

 TARGET (UNL)
 beautiful.@plus

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE INTENSIFIER
▪ (“very”,%x)(J,%y):=(%y,+@plus); OR

▪ (QUA,@plus,%x) (J,%y):=(%y,+@plus); OR

▪ (SAV,att,%x) (J,%y):=(%y,+att=%x);

 SOURCE (eng)
 The books

 TARGET (UNL)
 book.@def.@pl

 RULES
 DELETE THE BLANK SPACE

▪ (“ “):=;

 PROCESS THE ARTICLE
▪ (D,att,%x) (N,%y):=(%y,+att=%x);

 PROCESS THE NUMBER
▪ (N,PLR,^@pl,%x):=(+@pl,%x);

 Goal

 To create a NL-UNL grammar to generate the
corpus from your native language into UNL from
sentences 1 to 17

